
Micriµm  
Empowering Embedded Systems  

 
 
 
 
 
 
 
 

 

µC/OS-II  
and 

The STMicroelectronics STR711 Microcontrollers 
(Using the CrossWorks for ARM toolchain) 

 
 

Application Note 
AN-1711B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

www.Micrium.com 
 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

2 

Table Of Contents 
 
1.00  Introduction 3 
1.01  µC/OS-View 4 
1.02  Directories and Files 6 
1.03  Rowley Associates CrossWorks for ARM 8 
 
2.00  Test Code 9 
2.01  Test Code, app.c 11 
2.02  Test Code, app_cfg.h 14 
2.03  Test Code, includes.h 14 
2.04  Test Code, os_cfg.h 14 
2.05  Test Code, ST_STR711SK_Rowley_Ex1.* 14 
2.06  Test Code, str711.h 14 
2.07  Test Code, threads.js 14 
 
3.00  Board Support Package (BSP) 15 
3.01  Board Support Package, bsp*.* 16 
 
References 19 
 
Contacts 19 
 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

3 

1.00  Introduction 
 
This document describes example code for using µC/OS-II with the STMicroelectronics STR71x 
Microcontrollers. To test the code, we used a evaluation board which contains a STMicroelectronics 
STR711 (ARM7TDMI) microcontroller. The simplified block diagramm of a generic evaluation board is 
shown in Figure 1-1. 
 
This example uses the µC/OS-II port described in AN-1014, which allows you to run the STR71x either in 
ARM or Thumb mode. 
 
We also ported µC/OS-View to this board (see Section 1.01, µC/OS-View). If you did not purchase 
µC/OS-View from Micriµm, you can ‘disable’ it by removing the µC/OS-View files from the build. 
 
We used Rowley Associates CrossWorks for ARM to demonstrate the examples, but other toolchains can 
be used. In fact, you only need the evaluation version of CrossWorks for ARM to run the example code. 
 

 
Figure 1-1, The Block Diagram 

 
The 4 LEDs are connected to P0.4, P0.5, P06 and P0.7, the buttons to P0.15 and P1.9. 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

4 

1.01  µC/OS-View 
 
The application code described in this application note allows you to connect a Windows-based PC to 
your target and display run-time information about your target in a Window as shown in Figure 1-2. This is 
done via an add-on module called µC/OS-View. 
 
Note that you can ‘disable’ µC/OS-View by removing the µC/OS-View files from the build and setting 
OS_VIEW_MODULE to 0 in os_cfg.h. You would need to do this if you didn’t purchase µC/OS-View 
from Micriµm. 
 
 
µC/OS-View is a combination of a Microsoft Windows application program and code that resides in your 
target system (in this case, the STR711 Evaluation Board). The Windows application connects with your 
system via an RS-232C serial port (we used UART0 of the STR711). The Windows application allows you 
to 'View' the status of your tasks which are managed by µC/OS-II. 
 
µC/OS-View allows you to view the following information from a µC/OS-II based product: 
 

The address of the TCB of each task (up to 63 tasks) 
The name of each task (up to 63 tasks) 
The status (Ready, delayed, waiting on event) of each task 
The number of ticks remaining for a timeout or if a task is delayed 
The amount of stack space used and left for each task 
The percentage of CPU time each task relative to all the tasks 
The number of times each task has been 'switched-in' 
The execution profile of each task 
More. 

 
µC/OS-View also allows you to send commands to your target and allow your target to reply back and 
display information in a 'terminal window'. 
 
µC/OS-View is licensed on a per-developer basis. In other words, you are allowed to install µC/OS-
View on multiple PCs as long as the PC is used by the same developer. If multiple developers are using 
µC/OS-View then each needs to obtain their own copy. Contact Micriµm for pricing information. 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

5 

 
 

Figure 1-2, µC/OS-View Windows’ ‘Viewer’ 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

6 

1.02  Directories and Files  
 
The code and documentation of the port are placed in a directory structure according to “AN-2002, 
µC/OS-II Directory Structure”. Specifically, the files are placed in the following directories: 
 

µC/OS-II: 
 
\Micrium\Software\uCOS-II\Source 

This directory contains the processor independent code for µC/OS-II. The version used is 2.80 or 
higher. 

 
 
\Micrium\Software\uCOS-II\Ports\ARM 

This directory is the main directory for ARM7 ports. 
 
 
\Micrium\Software\uCOS-II\Ports\ARM\Generic 

This directory is used to place ‘generic’ ARM7 ports (i.e. ports that can be used with any target 
board). 

 
 
\Micrium\Software\uCOS-II\Ports\ARM\Generic\Rowley 

This directory contains the standard processor specific files for a µC/OS-II port assuming the 
Rowley Associates toolchain (CrossWorks for ARM). In fact, these files could easily be modified to 
work with other toolchains. However, you would place the modified files in a different directory. 
Specifically, this directory contains the following files: 
 

os_cpu.h 
os_cpu_a.s 
os_cpu_c.c 
os_dbg_c 

 
os_dbg.c is included to provide additional information to Kernel Aware debuggers. 
 
The port can work in either ARM or Thumb mode. The port is fully described in application note 
AN-1014 which is available from the Micriµm web site. The files are: 
 
AN-1014.PDF 
AN-1014-PPT.PDF 
 
 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

7 

µC/OS-View: 
 
\Micrium\Software\uCOSView\Source 

This directory contains the processor independent code for µC/OS-View. The version used was 
1.20. This directory contains the following files:  
 

os_view.c 
os_view.h 

 
 
 
\Micrium\Software\uCOSView\Ports\ARM7\STR71x\Rowley 

This directory is the main directory for µC/OS-View ARM7 ports specifically for 
STMicroelectronics STR71x series of microcontrollers. 

 
 

Application Code: 
 
\Micrium\Software\EvalBoards\ST\STR711\Rowley\Ex1 

This directory is the directory that contains the source code for Example #1 running on a STR711 
evaluation board. This directory contains: 
 

app.c 
app_cfg.h 
includes.h 
os_cfg.h 
ST_STR711SK_Rowley_Ex1.* 
str711.h 
threads.js 

 
app.c contains the test code, and app_cfg.h contains application specific configuration 
information, such as task priorities and stack sizes configuration. includes.h contains a master 
include file used by the application, and os_cfg.h is the µC/OS-II configuration file. str711.h 
is the header file for the STR711 and threads.js is the Plug-In for the CrossWorks debugger. 
ST_STR711SK_Rowley_Ex1.* are the CrossWorks project files. 
  

\Micrium\Software\EvalBoards\ST\STR711\Rowley\BSP 
This directory contains the Board Support Package for the STR711 evaluation board. 

 
\Micrium\Software\EvalBoards\ST\STR711\Doc 

This directory is the directory that contains the documentation for the STR711 test code. 
 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

8 

1.03  Rowley Associates CrossWorks for ARM 
 
We used the Rowley Associates CrossWorks for ARM 1.5 (build 2) to test the STR711 example. You can 
of course use µC/OS-II with other tools. Figure 1-3 shows the project tree in the CrossStudio. 
 

 
  

Figure 1-3, CrossWorks Project  
 
Figure 1-4 shows all the tasks created in the STR711 example. Each task can be assigned a name, you 
can also see the priority and the state. 
 

 
 

Figure 1-4, CrossWorks debugger Plug-In (threads.js) for µC/OS-II , Task List 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

9 

2.00  Test Code  
 
As mentioned in the previous section, the test code for this board is found in the following directory and 
will be briefly described: 
 

\Micrium\Software\EvalBoards\ST\STR711\Rowley\Ex1 
 
These files in this directory are: 
 

app.c 
app_cfg.h 
includes.h 
os_cfg.h 
ST_STR711SK_Rowley_Ex1.* 
str711.h 
threads.js 

 
The test code works either in ARM or Thumb mode. In fact, you can simply select ARM or Thumb 
Processor Mode (see Figure 2-1) and ‘rebuild’ the code and it will run just as well. 
 

  
 

Figure 2-1, Building either ARM (left) or Thumb (right) mode code 
 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

10 

As mentioned in AN-1014, µC/OS-II must run in SVC mode. Therefore the preprocessor definition 
SUPERVISOR_START must be set (see Figur 2-2). 
 

 
 

Figure 2-2, Preprocessor Definitions, SUPERVISOR_START 
 
Depending from where you have installed µC/OS-II you must set the user include directories. 
In Figure 2-3 µC/OS-II was installed in D:\Projekte. 
 

 
 

Figure 2-3, User Include Directories 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

11 

2.01  Test Code, app.c  
 
app.c demonstrates some of the capabilities of µC/OS-II. The code doesn’t really do anything useful 
except create an application task that blinks the 4 user LEDs on the evaluation board. 
 
Listing 2-1, main()  
 
void main (void)                                                   (1) 
{ 
    INT8U  err; 
 
    BSP_IntDisAll();                                               (2) 
 
    OSInit();                                                      (3) 
 
    OSTaskCreateExt(AppTaskStart,                                  (4) 
                    (void *)0, 
                    (OS_STK *)&AppTaskStartStk[APP_TASK_START_STK_SIZE - 1], 
                    APP_TASK_START_PRIO, 
                    APP_TASK_START_PRIO, 
                    (OS_STK *)&AppTaskStartStk[0], 
                    APP_TASK_START_STK_SIZE, 
                    (void *)0, 
                    OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR); 
 
#if OS_TASK_NAME_SIZE > 13 
    OSTaskNameSet(APP_TASK_START_PRIO, "Startup", &err);           (5) 
#endif 
 
#if OS_TASK_NAME_SIZE > 14 
    OSTaskNameSet(OS_IDLE_PRIO, "uC/OS-II Idle", &err); 
#if OS_TASK_STAT_EN > 0 
    OSTaskNameSet(OS_STAT_PRIO, "uC/OS-II Stat", &err); 
#endif 
#endif 
 
    OSStart();                                                     (6) 
} 
 
L2-1(1) As with most C applications, the code starts in main(). 
 
L2-1(2) We start off by calling a BSP function (see bsp.c) that will disable all interrupts. We do this to 

ensure that initialization doesn’t get interrupted in case we do a ‘warm restart’. 
 
L2-1(3) As with all µC/OS-II applications, you need to call OSInit() before creating any tasks or 

other kernel objects. 
 
L2-1(4) We then create at least one task (in this case we used OSTaskCreateExt() to specify 

additional information about the task to µC/OS-II). It turns out that µC/OS-II creates one and 
possibly two tasks in OSInit(). As a minimum, µC/OS-II creates an idle task 
(OS_TaskIdle() which is internal to µC/OS-II) and OS_TaskStat() (if you set 
OS_TASK_STAT_EN to 1 in OS_CFG.H). OS_TaskStat() is also an internal task in µC/OS-
II. 

 
L2-1(5) As of V2.6x, you can now name µC/OS-II tasks (and other kernel objects) and be able to 

display task names at run-time or with a debugger. In this case, we name our first task as well 
as the two internal µC/OS-II tasks. 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

12 

L2-1(6) We finally start µC/OS-II by calling OSStart(). µC/OS-II will then start executing 
AppStartTask() since that’s the highest priority task created. 

 
 
Listing 2-2, AppTaskStart()  
 
static  void  AppStartTask (void *p_arg) 
{ 
    p_arg = p_arg; 
 
    BSP_Init();                                                    (1) 
 
#if OS_TASK_STAT_EN > 0 
    OSStatInit();                                                  (2) 
#endif 
 
#if OS_VIEW_MODULE > 0 
    OSView_Init(19200);                                            (3) 
    OSView_TerminalRxSetCallback(AppTerminalRx);                   (4) 
    OSView_RxIntEn();                                              (5) 
#endif 
 
    LED_Off(0);                                                    (6) 
    while (TRUE) { 
        for (i = 1; i <= 4; i++) {                                 (7) 
            LED_On(i); 
            OSTimeDlyHMSM(0, 0, 0, 100); 
            LED_Off(i); 
        } 
        for (i = 1; i <= 4; i++) { 
            LED_On(5 - i); 
            OSTimeDlyHMSM(0, 0, 0, 100); 
            LED_Off(5 - i); 
        } 
    } 
} 
 
L2-2(1) BSP_Init() is called to initialize the Board Support Package – the I/Os, the tick interrupt, 

and so on.  BSP_Init() will be discussed in the next section. 
 
L2-2(2) OSStatInit() is used to initialize µC/OS-II’s statistic task. This only occurs if you enable 

the statistic task by setting OS_TASK_STAT_EN to 1 in OS_CFG.H. The statistic task 
measures overall CPU usage (expressed as a percentage) and also, performs stack checking 
for all the tasks that have been created with OSTaskCreateExt() with the stack checking 
option set. Stack checking is useful to have since it gives you warning about possible stack 
overflow problems. 

 
L2-2(3) OSView_Init() is called to initialize the µC/OS-View module. Here we need to specify the 

baud rate of the RS-232C port connecting the the µC/OS-View ‘viewer’. 
 
L2-2(4) OSView_TerminalRxSetCallback() allows you to specify the name of a function that will 

be called by µC/OS-View when characters are typed on the ‘Terminal Window’ of the 
µC/OS-View viewer.  

 
L2-2(5) OSView_RxIntEn() simply enables receive interrupts from the UART used for  

µC/OS-View. 
 
 
 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

13 

L2-2(6) LED_Off() is a BSP function that is used to turn off LEDs on the 
evaluation board. Passing 0 as an argument specifies to turn off ALL the user LEDs on the 
board. 

 
L2-2(7) The task then enters an infinite loop. This task simply turns on and then off each LED on the 

evaluation board one after the other from left to right and then from right to left. Each LED is 
turned on for 100 mS. 

 
The LEDs are a modification of the original evaluation board, and connected to P0.4 to P0.7. 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

14 

2.02  Test Code, app_cfg.h  
 
This file is used to establish the task priorities of each of the tasks in your application as well as the stack 
size for those tasks. The reason this is done here is to make it easier to configure task priorities for your 
entire application. In other words, you can set the task priorities of all your tasks in one place. 
 

2.03  Test Code, includes.h  
 
includes.h is a ‘master’ header file that contains #include directives to include other header files. 
This is done to make the code cleaner to read and easier to maintain. 
 

2.04  Test Code, os_cfg.h  
 
This file is used to configure µC/OS-II and defines the maximum number of tasks that your application 
can have, which services will be enabled (semaphores, mailboxes, queues, etc.), the size of the idle and 
statistic task and more. In all, there are about 60 or so #define that you can set in this file. Each entry is 
commented and additional information about the purpose of each #define can be found in the µC/OS-II 
book. os_cfg.h assumes you have µC/OS-II V2.80 or higher but also works with previous versions of 
µC/OS-II. 
 

2.05  Test Code, ST_STR711SK_Rowley_Ex1.*  
 
These files are CrossWorks project files. 
 

2.06  Test Code, str711.h  
 
str711.h is the header file for the STR711. 
 

2.07  Test Code, threads.js  
 
threads.js is the ‘Plug-In’ for the CrossWorks debugger. 
 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

15 

3.00  Board Support Package (BSP)  
 
BSP stands for Board Support Package and provides functions to encapsulate common I/O access 
functions in order to make it easier for you to port your application code. In fact, you should be able to 
create other applications using the STR711 board and reuse these functions, thus saving you a lot of time. 
 
The BSP performs the following functions: 
 

 - Determine the STR711’s CPU clock and peripheral frequencies 
 - Initialize the interrupt vector table 
 - Configure the I/Os for the board 
 - Read the status of the board’s push buttons 
 - Control the board’s LEDs 
 - Handle interrupts 
 - µC/OS-View timer functions 
 - Handling of µC/OS-II’s tick timer 
 - Set up the EIC (Enhanced Interrupt Controller) 

 
 
The BSP for the STR711 evaluation board is found in the follow directory. 
 

\Micrium\Software\EvalBoards\ST\STR711\Rowley\BSP 
 
The BSP files are: 
 

bsp.c 
bsp.h 

 
 
 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

16 

3.01  Board Support Package, bsp*.*  
 
We will not be discussing every aspect of the BSP but only cover topics that require special attention. 
 
Your application code must call BSP_Init() to initialize the BSP. BSP_Init() in turn calls other 
functions as needed. 
 
Listing 3-1, BSP_Init()  
 
void BSP_Init (void) 
{ 
    PRCCU_PLL1CR                      = 0x00000070;              (1) 
    PRCCU_CFR                        |= 0x00000003; 
 
    BSP_IRQ_VECTOR_ADDR               = 0xE59FF018;              (2) 
    BSP_IRQ_ISR_ADDR                  = (INT32U)OS_CPU_IRQ_ISR; 
 
    BSP_FIQ_VECTOR_ADDR               = 0xE59FF018; 
    BSP_FIQ_ISR_ADDR                  = (INT32U)OS_CPU_FIQ_ISR; 
 
    BSP_UNDEF_INSTRUCTION_VECTOR_ADDR = 0xEAFFFFFE;              (3) 
    BSP_SWI_VECTOR_ADDR               = 0xEAFFFFFE; 
    BSP_PREFETCH_ABORT_VECTOR_ADDR    = 0xEAFFFFFE; 
    BSP_DATA_ABORT_VECTOR_ADDR        = 0xEAFFFFFE; 
    BSP_FIQ_VECTOR_ADDR               = 0xEAFFFFFE; 
 
    BSP_Set_CPU_ClkFreqPeripheral();                             (4) 
 
    while (BSP_Peripheral_Clk1_Freq != BSP_CPU_FREQ) {           (5) 
        BSP_Set_CPU_ClkFreqPeripheral(); 
    } 
 
    BSP_IO_Init();                                               (6) 
 
    EIC_Init();                                                  (7) 
 
    LED_Init();                                                  (8) 
 
    Tmr_TickInit();                                              (9) 
} 
 
L3-1(1) The STR711’s PLL is set up to produce a CPU clock frequency of 32 MHz. Assumed we have 

a CK input frequency of 4 MHz. 
 
 
L3-1(2) At location 0x00000018 we ‘force’ the opcode for LDR PC,[PC,#0x18] such that when the 

CPU recognizes an IRQ interrupt, it will load the contents of location 0x00000038 into the PC 
(i.e. the address of OS_CPU_IRQ_ISR()). The same applies for the FIQ, except that we jump 
to OS_CPU_FIQ_ISR(). 

 
L3-1(3) We then use instructions that loop to themselves for the other exceptions. 
 
L3-1(4) BSP_Set_CPU_ClkFreqPeripheral() reads the appropriate STR711 registers to 

determine the frequency at which the board’s peripherals are running. 
 
L3-1(5) After modifying registers in the Power, Reset, Clock, and Control Unit, several CPU cycles 

must elapse before a new clock frequency takes effect.  Therefore, we continuously call 
BSP_Set_CPU_ClkFreqPeripheral() until it indicates that the desired CPU frequency is 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

17 

being used. 
 
L3-1(6) We then call BSP_IO_Init() to initialize the I/O ports. 
 
L3-1(7) We then call EIC_Init() to initialize the interrupt controller. 
 
L3-1(8) We initialize the LED services provided by the BSP. At this point, your application can call 

LED_On(), LED_Off() or LED_Toggle() to turn on, off and toggle (respectively) the 
board’s LEDs. 

 
L3-1(9) We then call Tmr_TickInit() which will initialize Timer #0 to generate interrupts for the 

µC/OS-II clock tick. The code for this function is described below. 
 
 
 
Listing 3-2, Tmr_TickInit() 
 
void Tmr_TickInit (void) 
{ 
    INT8U  err; 
 
 
    BSP_Tmr0_Rst_Value = (BSP_Peripheral_Clk2_Freq / (BSP_TMR0_PRESCALER + 1)) / 
                          OS_TICKS_PER_SEC;                                            (1) 
 
    err                = BSP_VectSet((INT16U)BSP_TMR0_INT,(BSP_PFNCT)Tmr_TickISR_Handler); 
 
    if (err == BSP_VECT_SET) { 
        EIC->SIR[BSP_TMR0_INT] |= 0x00000001;                                          (2) 
    } 
    EIC_IER   = 1 << BSP_TMR0_INT; 
 
    TIM0_CR2  = 0x4000 | BSP_TMR0_PRESCALER; 
    TIM0_CR1  = 0x8040; 
    TIM0_OCAR = BSP_Tmr0_Rst_Value; 
    TIM0_CNTR = 0xFFF0; 
} 
 
L3-2(1) A reset value for Timer #0 is calculated so that OS_TICKS_PER_SEC tick interrupts will be 

received each second. 
 
L3-2(2) A pointer to Tmr_TickISR_Handler(), the handler for the tick interrupt, is passed to 

BSP_VectSet().  BSP_VectSet() will place the pointer in a table of interrupt handlers that 
is accessed whenever an interrupt occurs.  A priority for the tick interrupt is also set. 

 
 
When Timer #0 issues an interrupt, the processor vectors to OS_CPU_IRQ_ISR() which then calls 
OS_CPU_IRQ_ISR_Handler() (see bsp.c). OS_CPU_IRQ_ISR_Handler() reads the EIC to obtain 
an index to the table of interrupt handlers set up by BSP_VectSet().  When a tick interrupt occurs, 
Tmr_TickISR_Handler(), which is shown in Listing 3-3, will be called. 
 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

18 

Listing 3-3, Tmr_TickISR_Handler() 
 
void Tmr_TickISR_Handler (void) 
{ 
    TIM0_SR  &= ~0x4000;                         (1) 
    EIC_IPR   = 0x00000001;                      (2) 
    TIM0_OCAR = BSP_Tmr0_Rst_Value;              (3) 
    TIM0_CNTR = 0xFFF0;                          (4) 
 
    OSTimeTick();                                (5) 
} 
 
L3-3(1)  The timer’s interrupt pending bit is cleared. 
 
L3-3(2) The timer’s interrupt pending bit within the EIC is also cleared. 
 
L3-3(3) The timer is reset to the value that was calculated in Tmr_TickInit(). 
 
L3-3(4) A write to the timer’s counter register restarts the timer. 
 
L3-3(5) OSTimeTick() is called to handle the µC/OS-II clock tick. 
 
 
You should note that ALL of your ISRs should be written as ‘void MyISR(void)’ functions as shown. Refer 
to AN-1014 for details. 



Micriµm 
µC/OS-II and the STMicroelectronics STR711 

19 

References  
 
µC/OS-II, The Real-Time Kernel, 2nd Edition  
Jean J. Labrosse 
R&D Technical Books, 2002 
ISBN 1-57820-103-9 
 
 
 

Contacts  
 
Rowley Associates Limited 
8 Silver Street 
Dursley 
Gloucestershire 
GL11 4ND 
UNITED KINGDOM 
+44 (0)1453 547916 
+44 (0)1453 544068 (FAX) 
e-mail: enquiries@rowley.co.uk 
WEB: www.rowley.co.uk 
  

R&D Books, Inc. 
1601 W. 23rd St., Suite 200 
Lawrence, KS 66046-9950 
USA 
(785) 841 1631 
(785) 841 2624 (FAX) 
e-mail: rushorders@cmpbooks.com 
WEB: www.cmpbooks.com 
 

Micriµm 
949 Crestview Circle 
Weston, FL 33327 
USA 
+1 954 217 2036 
+1 954 217 2037 (FAX) 
e-mail: Jean.Labrosse@Micrium.com 
WEB: www.Micrium.com 
 

Validated Software 
Lafayette Business Park 
2590 Trailridge Drive East, Suite 102 
Lafayette, CO  80026 
USA 
+1 303 531 5290 
+1 720 890 4700 (FAX) 
e-mail: Sales@ValidatedSoftware.com
WEB: www.ValidatedSoftware.com 
 

  

  
  
 


